Radiological Preparedness & Emergency Response

Radiological Preparedness & Emergency Response

Overview of Different Types of Threats Using Historical Examples

Radiological Preparedness & Emergency Response

Objectives

Discuss the threat from radiological terrorism and accidents.

Describe the different types of incidents using historical examples.

Why Are You Here?

Radiation threats are real.We may not be well prepared.

Are Radiation Sources Available?

- There are around:
- 150,000 licensed radioactive facilities in the USA
- 2,000,000 radioactive sources
- 400 lost sources per year in the world

Source IAEA

Emergency Responders Attitudes and Perceptions

A survey performed in Hawaii hospitals has shown that responders ranked radiation threats highest in terms of the fear generated when compared to chemical or biological terrorist attacks.

Emergency Responders and Radiological Preparedness

Research has shown that US clinicians and Public Health workers felt unprepared to respond to radiological or nuclear incidents.

Canadian survey-based study: 31% of EMS providers reported receiving training in radiation detection.

US Emergency Medicine Physician Survey

- 48% felt uncomfortable caring for radiation victims.
- 56% felt similarly about performing a radiation detection survey on patients.
- 52% and 68% felt uncomfortable diagnosing ARS and internal contamination.
- Majority were unfamiliar with use of DTPA, Prussian blue, and Filgrastim.
- Many respondents were unable to differentiate between contamination and exposure with radiological material.

Study in the Medical Reserve Corps Volunteers

- Evaluated perceived threat, perceived efficacy, and personal/organizational preparedness in 4 scenarios:
 - Weather-related disaster
 - Pandemic influenza emergency
 - Radiological ("dirty bomb") emergency
 - Inhalational anthrax emergency
- The radiological emergency consistently received the lowest scores for the attitude/belief statements and response willingness across scenarios.

Errett NA. Assessment of medical reserve corps volunteers' emergency response willingness using a threat- and efficacy-based model. Biosecur Bioterror. 2013 Mar;11(1):29-40.

Possible Scenarios

- Simple radiological device.
 Improvised nuclear device (IND).
- Nuclear weapon detonation.
- Nuclear power plant accident.
- Radioactive dispersal device (RDD).

Simple Radiological Device

- Exposure to penetrating ionizing radiation.
- Insidious onset.
- Initially silent.

Lja, Republic of Georgia-2002

Source IAEA

Yanango, Peru. Feb 20,1999

- Iridium source loss.
- Picked up by worker and put in his back pocket.
- The patient developed severe radiation burn in his pelvic area as well as ARS.
- He survived with significant disability.

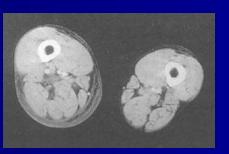


Photo 5. Blistering lesion surrounded with large inflammatory halo on the mid-upper line the rear surface of the right thigh (22 February 1999).

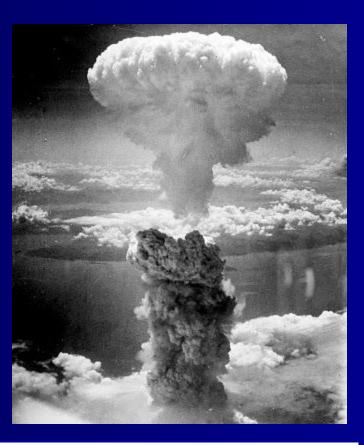
Source IAEA

oto 9. Extended superficial erosion surrounded by a large dusky inflammatory area in t rear surface of the right thigh (1 March 1999).

Yanango - Peru May and December,1999

Patient treated in France

May 1999


Photo 15. Very large necrotic lesion extended in the upper third of the right thigh. The depth of the defect is significant. The bottom is covered by a crust and is superinfected. The lesion edges are well defined, blistered and are above the surface of the surrounding tissue. They are surrounded by a depigmented halo (3 May 1999).

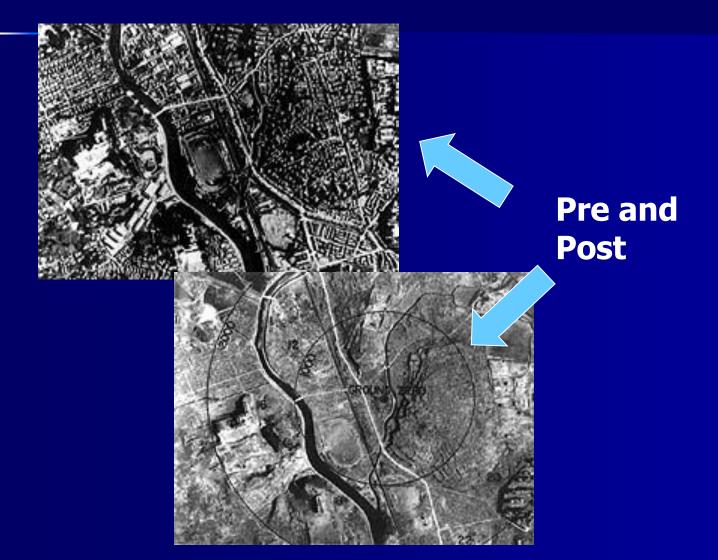
December 1999

Nuclear Weapon Detonation or Improvised Nuclear Detonation (IND)

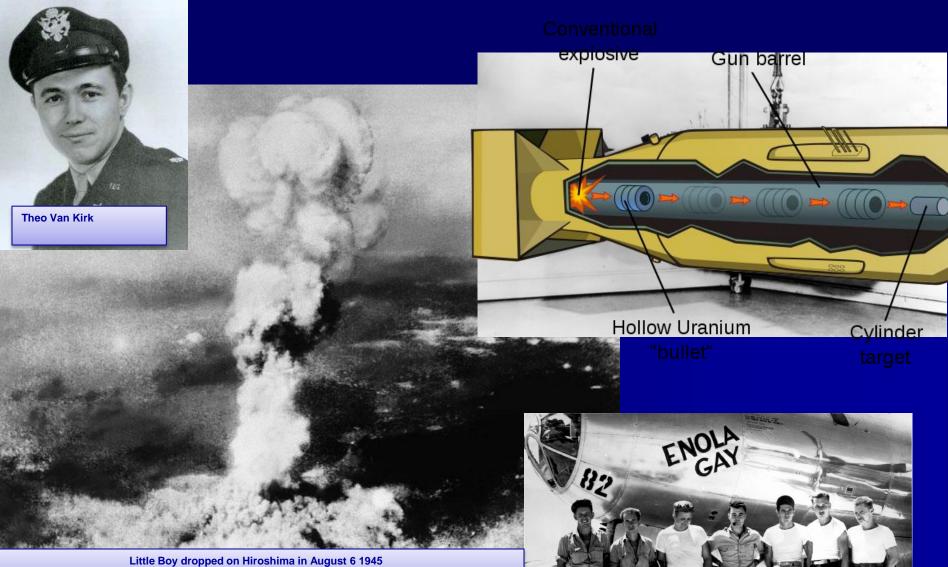
Air burst versus ground burst

Radiological Preparedness & Emergency Response

Nuclear Detonation


Fission reaction.

- Damage and mortality secondary to Nuclear weapon detonation:
 - Thermal blast (35%)
 - -Radiation (15%): initial and fallout
 - -Shock (50%)
- Electromagnetic pulse.

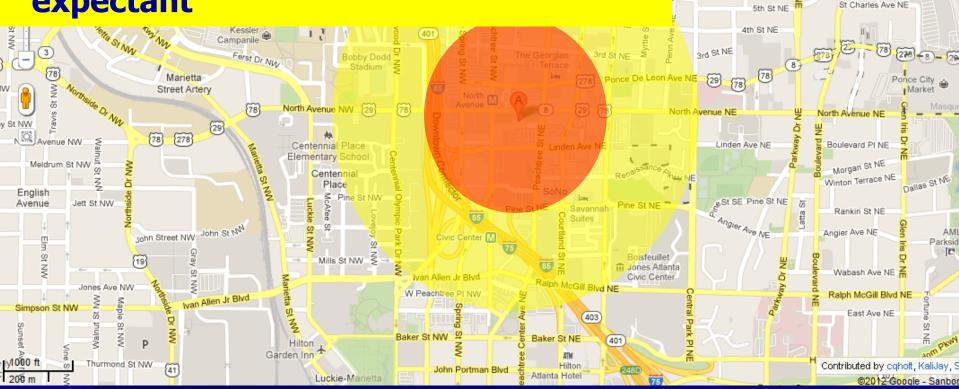


Nagasaki, 1945

A-59474

Nevada Atomic Bomb Testing Site - 1955

Film and images at 1 km (0.6 mile) from ~16kT yields


Equivalent to the outskirts of the severe damage zone

Moderate damage zone (1 mile radius):

- Some collapsed buildings, blown out building interiors, overturned automobiles, fires
- Significant thermal burns if outdoors
- 38% immediate fatalities, 14% expectant

Georgia > Fulton > Atlanta > Midtown

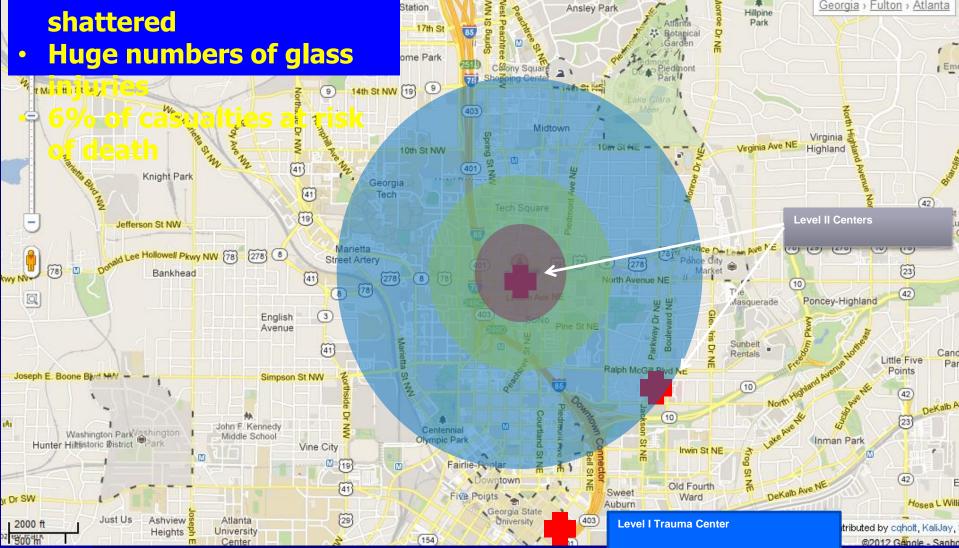
Henry W. Grady

High School

8th St NE

9th St NE

7th St NE 3


8th St NE

τ

Find the st NE

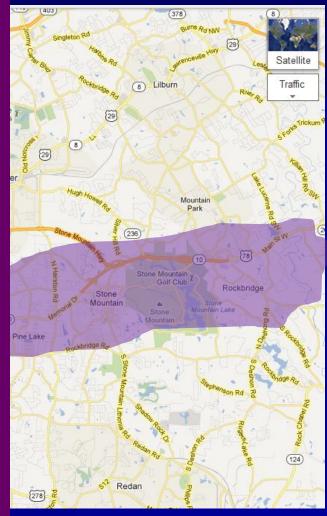
Light damage zone:

- 2-3 mile radius •
- 25% of windows are shattered

Atlantic

Station

Temporary blindness 5-10 miles awav



Georgia > Fulton > Atlanta

Dangerous Fallout Zone or

Dangerous Radiation Zone:

- Extends 25 miles downwind of ground zero
- Reaches maximum extent at 1 hr
- Severely hazardous fallout will descend to the ground within a few hours and may shrink to a few miles in a couple of days (decay)
- Mostly visible to naked eye (grains of sand)
 Exposure rate >10 R/h

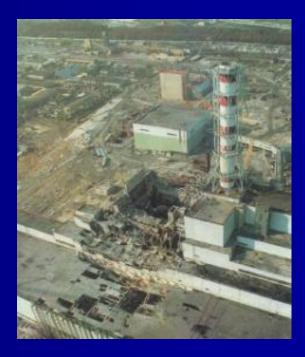
Casualties (10 kT model)

For large city with 2 million population -230,000 immediate fatalities -323,000 injured survivors 99,000 will succumb without medical treatment 73,000 will still succumb with medical treatment 26,000 can be saved with medical

treatment

Nuclear Power Plant Accident- Fukushima

- 6 reactors
- Meltdown risk
- I-131
- Other radionuclides



Nuclear Power Plant Accident-Chernobyl

- Nuclear reactor can occur leading to an explosion.
- Iodine is a fission product and is majorly responsible for human exposure.

Firefighters in Chernobyl

- 237 emergency workers had ARS.
- ARS was identified as the cause of death for 28 of these people within the first few months after the disaster.

Source Wikkipedia

Long Term Clean Up

Criticality Accident-Tokai Mura Japan in 1999

- Irradiation accident resulting from human error.
- Uranium mixing error.
- 119 workers exposed to 1 msV.
- 3 workers were involved.

Source IAEA and Health Physics

Worker 1

- Lost consciousness a few minutes after the explosion and then began to vomit.
- He recovered consciousness 70 minutes later and had diarrhea.
- He developed acute radiation syndrome.
- Received BMT from sister.
- Died 3 months later.

Worker 2

 Vomited after an hour.
 Developed acute radiation syndrome.
 Survived almost one year.

Source JAEA

Worker 3

Was in an office 10-20 m away.
Asymptomatic. Only mild nausea.
Survived.

Radiological Dispersal Device (RDD)

 Radioactive material

 Dispersed using explosives (dirty bomb) or
 Dispersed without the use of explosives (Goiania incident)

Moscow Park and Market-1995

Source PBS

Jose Padilla

- Arrested in 2002 in Chicago's O'Hare airport.
- Accused of plotting a terrorist attack in the US.
- Thought to have received dirty bomb detonation instructions in Pakistan.

Source Wikimedia Commons

"Dirty Bomb"

Conventional explosive + radioactive material= "dirty bomb".
 High "fear factor" in the press/public.
 Economic toll

"Dirty Bomb simulation"

- Simulation of long-term contamination due to a cobalt-60 bomb in New York City.
- Cancer deaths due to radiation: Inner ring: One per 100 people Middle ring: One per 1,000 Outer ring: One per 10,000.

Courtesy Federation of American Scientists

Goiania Incident: RDD

The detelles radictherapy clinic in Gosània from which the consistent source was taken

Source IAEA

1985.

- Abandoned teletherapy clinic.
- 2 thieves and a junkyard owner.
- Material glows at night.

Goiania incident

 112,000 people were surveyed at the Olympic stadium.

5. Monitoring people for contamination at the Olympic stadium.

4. The physicist W.F. monitoring for contamination at the Olympic stadium.

Source IAEA

Goiania incident

- 249 found to be contaminated.
- 1 amputation
- 4 Deaths.
- Prussian Blue therapy.
- Evacuations.
- Demolition of homes, etc.

8. An improvised way of filling eight drams simultaneously with contaminated soil

Summary Points

Radiological and nuclear threats are real.

- Emergency responders are not well prepared to respond.
- Different types of threats exist.

Any Questions?

Radiological Preparedness & Emergency Response