
г		1
	Special Topics: Thermal Burns & Smoke	
l	Inhalation	A
1	MEDICAL RESPONDER AND RECEIVER SEMINAR: EXPLOSION AND BLAST INJURIES	(U
	-	
	25	
	Pathophysiology of the Burn Wound	_
	 The burn wound is the source of virtually all ill effects seen in the burn patient. 	_
	Removal of the burn wound results in much	
	improved patient outcome.	-
	-	
	0	
ſ		Am
	Cellular and Tissue Effects	7 (-)
	Damage to the cells and tissue is a function of	
	temperature and time. • Sustained temperatures between 40C and 44C	<u> </u>
	cause various enzymes to malfunction.	
	 Higher temperatures cause protein breakdown. 	
- 1		1

Cellular and Tissue Effects

- · Zone of coagulation
 - Protein coagulation and cell necrosis
- · Zone of stasis
 - Cell initially viable, but blood flow compromised
- · Zone of hyperemia
 - Minimal cellular injury, but increased blood flow and vasodilatation

Zones of Injury

Source: Feliciano DV, Mattox KL, Moore EE: Trauma, 6th Edition http://www.accesssurgery.com

Copyright € The McGraw-Hill Companies, Inc. All rights reserved

Systemic Effects

- Consumption of clotting factors and platelets
- · Suppression of cellular immunity
- · Myocardial depression
- · Pulmonary dysfunction
- Hypermetabolism
- · Fat and skeletal muscle catabolism
- Renal dysfunction

Primary Survey

- · Airway:
 - Can deteriorate abruptly and rapidly
 - Airway obstruction due to progressive edema
- Breathing
 - Circumferential full thickness burns
 - Lung injury can affect oxygenation
- Circulation
 - BP, Pulse, circumferential burns and third-spacing
- · Disability
 - Neurologic status may be affected due to multiple causes
- Evnosure
 - Pay attention to hypothermia-induced stress

Inhalation Injury

- Upper airway burns
 - Tracheobronchial injury
- Lower airway burns
 - Lungs
- Toxic compounds
 - Carbon monoxide
 - Cyanide

Ziad Kazzi 2012 ©

Smoke Inhalation

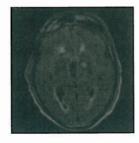
- · Smoke particles
 - Clinical manifestations:
 - Stridor, cough, shortness of breath
 - Carbonaceous sputum, soot in airway, singed nasal vibrissae, facial burns
 - Can lead to rapid airway compromise
 - Surgical airway may be needed if oral intubation is not successful

Carbon Monoxide-Mechanism

- Binds hemoglobin to form carboxyhemoglobin that is unable to carry oxygen
- May inhibit to a certain degree cytochrone oxidase

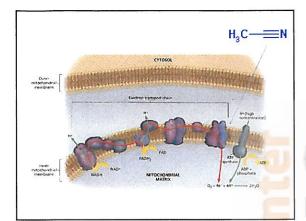
Carbon Monoxide-Clinical

- Most common presentation:
 - Flu-like illness
- CNS
- CV


Carbon Monoxide-Labs

- Carboxyhemoglobin level (Arterial or Venous)
- · Creatine kinase
- EKG, CXR

Carbon Monoxide


- 100% Oxygen therapy
- · Hyperbaric oxygen therapy

Long-term Effects

Hydrogen Cyanide-Mechanism

- · Inhibits cytrochrome oxidase
- · Cells are unable to use oxygen
- · Anerobic metabolism prevails
- · Lactate accumulates

Hyrdrogen Cyanide-Clinical

- · Clinical:
 - CNS
 - CV
 - Bitter almond: only 60% of population can detect it.
 - Cherry red skin, fundoscopic exam

Hydrogen Cyanide-Labs

- Lactic acidosis with a lactate > 7 mmol/l
- Elevated venous O2 saturation
 - >90%
- Low O2 extraction when comparing a Venous PO2 with and Arterial PO2

Cyanide Antidote Kit

- AKA the Lilly kit
- Contains:
 - Amyl nitrite pearls
 - -Sodium nitrite
 - -Sodium thiosulfate

Hydroxocobalam in

- 5 g IV over 15 minutes
- May repeat dose if no response and patient is critically ill

Adverse Effects of Hydroxocobalamin

Secondary Survey

- History
- Circumstances
- Cause

Secondary Survey

- · Duration of contact with flame
- · Method used to extinguish the fire
- Substances placed on the burns during prehospital/bystander wound care

Secondary Survey

- Setting
 - Indoors versus outdoors
- Associated trauma
 - Blast injuries
- · Associated smoke inhalation

Past Medical History

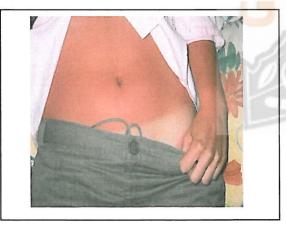
- · Comorbid conditions
 - Diabetes, renal failure, cardiovascular disease
 - Immunocompromised state
 - Previous disabilities and special needs

AMPLE

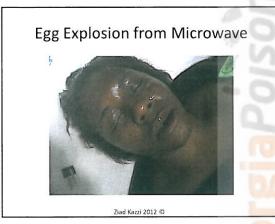
- Allergies
- Medications
- · Last meal
- Tetanus status

Depth of Burn

- First degree
- Second degree or partial thickness
 - Superficial and deep Hypo
- Third degree or full thickness
- · Fourth degree

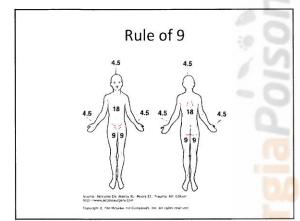


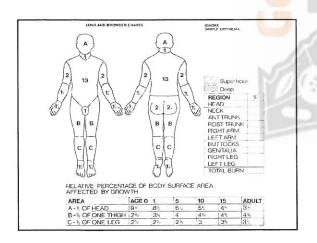
Burn Depth Estimation


- First degree: painful erythematous like a sunburn
- Partial thickness or second degree: painful, blisters, erythematous
- Full thickness or third degree: insensate, pale, without viable hair follicles, cadaveric/leathery consistency to palpation

First Degree Burn

Second Degree Burn Figg Explosion from Microwave





Burn Surface Area Estimation

 The patient's hand including fingers is approximately 1% of Total BSA

14

The Berkow Chart

AREA	I YR	1-4 YR5	3-9 YRS	10-14 YRS	15 YR5
Head	19	17	13	11	9
Necx	2	2	2	2	2
Ant, bunk	13	13	13	13	13
Post trunk	13	13	13	17	13
Buttock	2.5	2 5	2.5	2 5	2.5
Genitalia	1	1	1	1	1
Upper arm	4	4	4	4	4
Lower arm	3	3	3	3	3
Hand	2.5	2.5	2.5	2.5	2.5
Thigh	5.5	6.5	8	0.5	9
Leg	5	5	5.5	6	6.5
Foot	3.5	3.5	3.5	3.5	3.5

Assessment for Perfusion/Ventilation

- Circumferential full thickness burns
 - Extremity perfusion may be compromised
 - Ventilation may be compromised

Special Consideration-Pediatrics

- Larger surface area of head
- More susceptible to hypothermia
- Moral support to patient and parents

Fluid Resuscitation

- Fluid is determined by the severity of injury
 - Amount of 2nd and 3rd degree burn
- · Lactated ringers
- · Initial fluid determined by parkland formula
 - 2-4cc/kg/%TBSA
 - ½ over the first 8 hours
- DO NOT BOLUS
- · Titrate fluid to urine output
 - 30-50cc/hour

Fluid Resuscitation

FORMULA	CRYSTALLOID	COLLOID VOLUME	FREE WATER
Parkland	4 ml/kg/%TBSA burn	None	NONE
Brooke	1.5 ml/kg/%TBSA burn	0.5 mL/kg/% TBSA burn	2 L
Galveston (Pediatric)	5000 mL/m ² burned + 1500 mL/m ² total	None	None

Adapted from Feliciano

Maintenance Fluids

- Note that maintenance fluids need to be added in children to the Parkland formula.
- When using the Galveston formula, maintenance fluids are already included.

Wound Care

- If the patient is to be transferred, cover the burns with sterile, dry, towels or sheets
- Do not soak the burns or wrap with wet towels, this may induce hypothermia and worsen outcome.

Zıad Kazzi 2012 ©

Job Well Done!

Ziad Kazzi 2012

Cleansing Solution

- Antispectic scrub
 - Chlorhexidine versus Povidone-Iodine

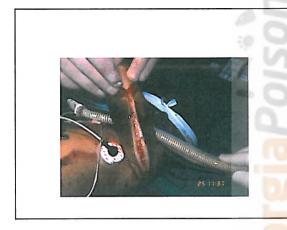
Ointments

- Silver preparations (e.g., silver sulfadiazine)
 - 5 mm layer every 24 hours
 - Sulfa allergy
 - Staining of skin
- Silver nitrate (0.5%)
 - Can be used in sulfa allergy
 - less burn eschar penetration

Ointments

- · Acticoat® silver based dressing
 - No need for dressing change
 - Need for frequent application of silver nitrate
- Mafenide Acetate (Sulfamylon®)
 - Sulfonamide. Excellent antibiotic coverage
 - Cartilage

Ointments


- Neosporin®, Polysporin® and Bacitracin® are the most commonly used.
- Neosporin activity is due to the combination of three different types of antibiotics with different spectra:
 - · Bacitracin (gram-positive activity)
 - · Neomycin (gram-negative activity)
 - Polymyxin B (gram-negative activity)

Escharotomy-Indications

- Used to treat full thickness (third-degree) circumferential burns.
- Underlying tissues become constricted due to the eschar's loss of elasticity, leading to impaired circulation distal to the wound.
- The ability to ventilate a patient may be impaired by a circumferential chest burn.

		 7/50000 0 A 27/4 3	
	-		
	<u> </u>		
4		 	
	3000 3000 3000		
(6.4)			
-			

Escharotomy- Description • H shaped incision Escharolomy sites

Transfer to Burn Center

- Partial thickness burns >10% TBSA.
- Burns involving the face, hands, feet, genitalia, perineum, or major joints.
- Third degree burns in any age group.
- · Electrical burns, including lightning.
- Chemical burns.
- Inhalation injury.
- Burns in patients with pre-existing medical problems.
- · Combination of burns and trauma.

